Feature normalization and likelihood-based similarity measures for image retrieval
نویسندگان
چکیده
Distance measures like the Euclidean distance are used to measure similarity between images in content-based image retrieval. Such geometric measures implicitly assign more weighting to features with large ranges than those with small ranges. This paper discusses the effects of five feature normalization methods on retrieval performance. We also describe two likelihood ratio-based similarity measures that perform significantly better than the commonly used geometric approaches like the Lp metrics.
منابع مشابه
Probabilistic vs. Geometric Similarity Measures for Image Retrieval
Similarity between images in image retrieval is measured by computing distances between feature vectors. This paper presents a probabilistic approach and describes two likelihood-based similarity measures for image retrieval. Popular distance measures like the Euclidean distance implicitly assign more weighting to features with large ranges than those with small ranges. First, we discuss the ef...
متن کاملImage Retrieval Using Dynamic Weighting of Compressed High Level Features Framework with LER Matrix
In this article, a fabulous method for database retrieval is proposed. The multi-resolution modified wavelet transform for each of image is computed and the standard deviation and average are utilized as the textural features. Then, the proposed modified bit-based color histogram and edge detectors were utilized to define the high level features. A feedback-based dynamic weighting of shap...
متن کاملEvaluation of Similarity Measures for Template Matching
Image matching is a critical process in various photogrammetry, computer vision and remote sensing applications such as image registration, 3D model reconstruction, change detection, image fusion, pattern recognition, autonomous navigation, and digital elevation model (DEM) generation and orientation. The primary goal of the image matching process is to establish the correspondence between two ...
متن کاملروشی برای بازخورد ربط براساس بهبود تابع شباهت در بازیابی تصویر بر اساس محتوا
In content based image retrieval systems, the suitable visual features are extracted from images and stored in the feature database Then the feature database are searched to find the most similar images to the query image. In this paper, three types of visual features by 270 components were used for image indexing. Here, we use a weighted distance for similarity measurement between two images....
متن کاملEffects of Feature Normalization on Image Retrieval
Image retrieval algorithms use distances between feature vectors to compute similarities between images. An important step between feature extraction and distance computation is feature normalization. Popular distance measures like the Euclidean distance implicitly assign more weighting to features with large ranges than those with small ranges. This paper describes six normalization methods to...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Pattern Recognition Letters
دوره 22 شماره
صفحات -
تاریخ انتشار 2001